Antimatter

Introduction to Antimatter

In 1928, British physicist Paul Dirac wrote down an equation that combined quantum theory and special relativity to describe the behaviour of an electron moving at a relativistic speed. The equation – which won Dirac the Nobel prize in 1933 – posed a problem: just as the equation x2=4 can have two possible solutions (x=2 or x=-2), so Dirac's equation could have two solutions, one for an electron with positive energy, and one for an electron with negative energy. But classical physics (and common sense) dictated that the energy of a particle must always be a positive number.

Dirac interpreted the equation to mean that for every particle there exists a corresponding antiparticle, exactly matching the particle but with opposite charge. For the electron there should be an "antielectron", for example, identical in every way but with a positive electric charge. The insight opened the possibility of entire galaxies and universes made of antimatter.

But when matter and antimatter come into contact, they annihilate – disappearing in a flash of energy. The big bang should have created equal amounts of matter and antimatter. So why is there far more matter than antimatter in the universe?

The story of antimatter

Antimatter at CERN

The first atoms of antihydrogen – the antimatter counterpart of the simplest atom, hydrogen – were created at CERN in 1995. An atom of antihydrogen consists of an antiproton and a positron (an antielectron), which makes it the simplest antiatom. Unfortunately, this does not make it any easier to produce in the lab. It was a difficult task both for the physicists and for the operation team at CERN’s Low Energy Antiproton Ring (LEAR) – where the discovery of antihydrogen took place. The researchers allowed antiprotons circulating inside LEAR to collide with atoms of a heavy element. Any antiprotons passing close enough to heavy atomic nuclei could create an electron-positron pair; in a tiny fraction of cases, the antiproton would bind with the positron to make an atom of antihydrogen.

However, the fleeting existence of the handful of antiatoms meant that they could not be used for further studies. Each one existed for only about 40 billionths of a second, travelling at nearly the speed of light over a path of 10 metres before it annihilated with ordinary matter. In 2002, the ATHENA and ATRAP experiments managed to form much slower atoms of antihydrogen, moving at "only" 1000's of meters per second, and in much larger quantities but it took almost another decade before antihydrogen atoms cold enough to be trapped could be made. In 2011, ALPHA – an international collaboration currently running experiments at CERN's Antiproton Decelerator facility – succeeded in trapping antihydrogen atoms for 1000 seconds. By precise comparisons of hydrogen and antihydrogen, several experimental groups hope to study the properties of antihydrogen and see if it has the same spectral lines as hydrogen. One group, AEGIS, will even attempt to measure g, the gravitational acceleration constant, as experienced by antihydrogen atoms.

The ACE experiment is testing the use of antiprotons for cancer therapy. In 2017, a facility called ELENA will enable all experiments working at the Antiproton Decelerator to get lower energy and more abundant antiproton beams, making it even easier to produce antihydrogen in large quantities.